pyalfe.main#
- pyalfe.main.run(accession: str, input_dir: str, output_dir: str, modalities: str = ['T1', 'T1Post', 'FLAIR', 'T2', 'ADC', 'SWI', 'CBF'], targets: str = ['FLAIR', 'T1Post'], dominant_tissue: str = 'white_matter', image_processor: str = 'nilearn', image_registration: str = 'greedy', data_dir_structure: str = 'alfe', tissue_segmentation: str = 'prior', overwrite: bool = True) None [source]#
Runs the pipeline for an accession number.
- Parameters:
accession (str) – the accession number for which you want to run the pipeline.
config (str, default:
DEFAULT_CFG
) – the path to the config file.input_dir (str) – the path to the directory containing input images
output_dir (str) – the path to the directory containing output images
modalities (str, default:
DEFAULT_MODALITIES
) – comma separated modalitiestargets (str, default:
DEFAULT_TARGETS
) – comma separated target modalitiesdominant_tissue (str, default:
DEFAUlT_DOMINANT_TISSUE
) – dominant tissueimage_processor (str, default:
DEFAULT_IMAGE_PROCESSOR
) – image processor that is used by the pipeline.image_registration (str, default:
DEFAULT_IMAGE_REGISTRATION
) – image registration that is used by the pipeline.data_dir_structure (str, default:
DEFUALT_DATA_DIR_STRUCTURE
) – the data directory structure, it can be ‘alfe’ or ‘bids’.tissue_segmentation (str, default:
DEFAULT_TISSUE_SEGMENTATION
) – the tissue segmentation method, it can be ‘prior’ or ‘synthseg’overwrite (bool, default:
DEFAULT_OVERWRITE
) – if True, the pipeline overwrites existing output images.
- Return type:
None